EconS 527- Homework #3 (Due on September 26th, 2018)

- 1. The certainty equivalent of a lottery is the amount of money you would have to be given with certainty to be just as well-off with that lottery. Suppose that your von Neumann-Morgenstern utility function over lotteries that give you an amount x if Event 1 happens and y if Event 1 does not happen is $U(x, y, \pi) = \pi \sqrt{x} + (1 \pi) \sqrt{y}$ where π is the probability that Event 1 happens and 1π is the probability that Event 1 does not happen.
 - a. If $\pi = 0.5$, calculate the utility of a lottery that gives you \$10,000 if Event 1 happens and \$100 if Event 1 does not happen.
 - b. If you were sure to receive \$4,900, what would your utility be?
 - c. Given this utility function and $\pi = .5$, write a general formula for the certainty equivalent of a lottery that gives you x if Event 1 happens and y if Event 1 does not happen.
 - d. Calculate the certainty equivalent of receiving \$10,000 if Event 1 happens and \$100 if Event 1 does not happen.
- 2. Textbook H. Varian (Third Edition), Chapter 11, question 11.6 (Page 195)
- 3. Assume that your utility function over income, x, is given by $u(x) = \sqrt{x}$, i.e., a Cobb-Douglas type. You have been offered two wage offers.
 - In the first one you will receive a fixed salary of \$54,000.
 - In the second one, you will only receive \$4,000 as a fixed payment, plus a bonus of \$100,000 if the firm is profitable. The probability that the firm goes profitable (and thus you get a total salary of \$104,000) is 0.5, while the probability that the firm does not make enough profits is 0.5.
 - a) Find the expected value of the lottery induced by accepting the second wage offer.
 - b) Find the expected utility associated with the second offer.
 - c) Draw an approximate figure where the following elements are illustrated:
 - i. Utility function (either concave, linear or convex);
 - ii. Utility level from the first wage offer;
 - iii. Utility level from each of the two possible outcomes of the second wage offer.
 - iv. Expected utility level from the second wage offer.
- d) Using your answers from parts (a) and (b), find the risk premium associated with the second offer.
- e) What amount of money should the first wage offer propose in order to make you indifferent between accepting the first and the second wage offers?
- 4. Consider the family of utility functions with Hyperbolic Absolute Risk Aversion (HARA) as follows $u(x) = \frac{1}{\beta 1} (\alpha + \beta x)^{\frac{\beta 1}{\beta}}$

where $\beta \neq 0$ and $\beta \neq 1$. Find the Arrow-Pratt coefficient of absolute risk-aversion, $r_A(x, u)$.