
Practice exercises - EconS 527 (10/19/2016)

1. [Independence axiom and convexity]. Consider an individual with preferences
over lotteries that satisfy the independence axiom. Answer the following questions.

(a) Show that the independence axiom implies convexity, i.e., for three di¤erent lot-

teries L, L0 and L00, if L � L0 and L � L00, then L � �L0 + (1� �)L00:

� From L � L0 we can apply the independence axiom, and obtain

�L+ (1� �)L � �L0 + (1� �)L

where note that we added (1� �)L on both sides of L � L0. Similarly, from
L � L00 we can apply the independence axiom to obtain

(1� �)L+ �L0 � (1� �)L00 + �L0

where we added �L0 on both sides of the strict preference relationship L � L00.
By transitivity (from the two previous expressions), we have

�L+ (1� �)L � (1� �)L00 + �L0

and rearranging

L � �L0 + (1� �)L00

Intuitively, convex preference over lotteries means that if a decision maker

prefers a lottery L over either two lotteries, L
0
or L

00
, then he must also prefer

lottery L over a convex combination of these two lotteries, �L
0
+ (1� �)L00

,

i.e., the compound lottery of L
0
and L

00
.

(b) Discuss why a decision maker whose preferences violate convexity can be o¤ered

a sequence of choices that lead him to a sure loss of money

� If a decision maker�s preferences over lotteries violate convexity, then we must
have that for three di¤erent lotteries L, L0 and L00, where L % L0 and L % L00,
we obtain the opposite result than above; that is

�L0 + (1� �)L00 � L
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Note that, if the decision maker initially owns the right to participate in

lottery L, he will be willing to pay an amount $X in order to switch to the

compound lottery �L0+ (1� �)L00 given that �L0+ (1� �)L00 � L. Now he
owns the compound lottery �L0 + (1� �)L00, and either lottery L0 or lottery
L00 are realized. But we know that the decision maker prefers lottery L to

either of these lotteries since

L % L0 and L % L00

was an initial assumption of this decision maker�s preferences over lotteries.

Therefore, he would be willing to pay again $Y in order to obtain lottery L.

Hence, the decision maker is exactly as at the starting point of this sequence

of deals (lottery L) and has lost $X + $Y . We can then repeat the process

again and again, and make this individual pay $X +$Y dollars, keeping him

exactly where he started! Essentially, this type of decision maker could be

subject to a systematic explanation (the so-called Dutch books), being wiped

out of the market place.

2. [von-Neumann Morgenstern utility function]. Let G be the set of compound

gambles over a �nite set of deterministic payo¤s fa1; a2; :::ang � R+. A decision maker�s
preference relation % over compound gambles can be represented by utility function

v : G! R. Let g 2 G, and let probability pi be associated to the corresponding payo¤
ai. Finally, consider that the decision maker�s utility function v(�) is given by

v(g) = (1 + a1)
p1 (1 + a1)

p2 :::(1 + an)
pn =

nY
i=1

(1 + ai)
pi

(a) Show that this is not a von Neumann-Morgenstern (vNM) utility function.

� Since v(g) is not linear in the probabilities, then v(g) cannot be a vNM
expected utility function, with general form

v(g) =

NX
i=1

piu(ai)

(b) Show that the decision maker has the same preference relation as an expected

utility maximizer with von-Neumann Morgenstern utility function

u(g) =
nX
i=1

pi ln (1 + ai) :
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� Since ln(�) is a monotonic transformation of v(�), both functions represent
the same preference relation. Applying the monotonic transformation u(g) =

ln [v(g)] to the original function v(g), we obtain

ln

 
nY
i=1

(1 + ai)
pi

!
=

nX
i=1

pi ln (1 + ai)

which represents the initial preference relation over lotteries, and it is linear

in the probabilities. Hence, it is a vNM utility function.

(c) Assume now that the decision maker you considered in part (b) has utility function

u(w) = ln (1 + w) over wealth w > 0. Evaluate his risk attitude (concavity in his
utility function). Additionally, �nd the Arrow-Pratt coe¢ cient of absolute risk

aversion, rA(w; u). How does rA(w; u) change in wealth?

� Given that u(w) = ln(1 + w), where w > 0, then the �rst and second order
conditions with respect to w are

u0(w) =
1

1 + w
> 0 and u00(w) = � 1

(1 + w)2
< 0;

which implies that the utility function is concave, as depicted in �gure 5.2,

and that the decision maker is risk-averse.

Utility function u(w) = ln(1 + w)

� Let us now obtain the Arrow-Pratt coe¢ cient of absolute risk-aversion, rA(w; u),
as follows

rA(w; u) = �
u00(w)

u0(w)
= �

� 1
(1+w)2

1
1+w

=
1

1 + w

� Finally, we want to know how this coe¢ cient of absolute risk aversion varies

3



with wealth,
@rA(w; u)

@w
= � 1

(1 + w)2

which is negative for all wealth levels w > 0. Hence, the agent becomes less
risk-averse as he becomes more wealthy. Figure 5.3 illustrates this coe¢ cient,

rA(w; u), evaluated at di¤erent wealth levels.

Coe¢ cient of absolute risk aversion.

3. [Risk aversion and convexity of indi¤erence curves] Consider an individual
with concave utility function u(x) over monetary outcomes x 2 R2+. Show that his
indi¤erence curves in the (x1; x2)�quadrant must be convex.

� We next �rst �nd the expression of indi¤erence curves for a given utility level.
Then, we show that indi¤erence curves have a negative slope. Finally, we demon-

strate that they are convex (concave, linear) if and only if the utility function

u(x) is concave (convex, linear; respectively).

� Fix the utility level at k, i.e., u(x) = k. Solving for x2, we obtain the indi¤erence
curve x2 = f(x1). We can express the utility level k as the identity

�u(x1) + (1� �)u(f(x1)| {z }
x2

) � k

� Slope of the IC. In order to better understand the shape of this indi¤erence curve,
let us di¤erentiate it with respect to x1, to obtain

�u0(x1) + (1� �)u0(f(x1))f 0(x1) = 0

and solving for the slope of the indi¤erence curve, f 0(x1), yields

f 0(x1) = �
�

1� �
u0(x1)

u0(f(x1))
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Since u0(�) > 0 by de�nition, and given that �
1�� > 0, we obtain that f

0(x1) < 0.

In words, indi¤erence curves have a negative slope.

� Convexity of the IC. Di¤erentiating f 0(x1) again, we �nd

f 00(x1) = �
�

1� �
u00(x1)u

0(f(x1))� u0(x1)u00(f(x1))f 0(x1)
[u0(f(x1))]

2

and using the fact that x2 = f(x1) and the above result, f 0(x1) = � �
1��

u0(x1)
u0(f(x1))

,

this expression becomes

f 00(x1) = �
�

1� �
u00(x1)u

0(x2)� u0(x1)u00(x2)
h
� �
1��

u0(x1)
u0(x2)

i
[u0(x2)]

2

Hence, (1) if the utility function is linear, u00(x1) = 0, the indi¤erence curve is

also linear given that f 00(x1) becomes f 00(x1) = 0; (2) when the utility function is

concave, u00(x1) < 0, the indi¤erence curve is convex because f 00(x1) > 0; and (3)

when the utility function is convex, u00(x1) > 0, the indi¤erence curve becomes

concave as f 00(x1) < 0. Therefore, indi¤erence curves are linear, convex or concave

when the decision maker is risk neutral, risk averse, and risk lover; respectively.

4. [Regret theory]. Consider the set of deterministic payo¤s fa1; a2; :::ang � R+. Stud-
ies in regret-based decision making often consider the following utility function: �rst,

de�ne the highest deterministic payo¤ that could be reached in gamble g by using

function

h(g) = max fak : k 2 f1; 2; :::; ng and pk > 0g :

Subtracting h(g) from all deterministic outcomes and computing its expected value

yields the utility level

v(g) =
nX
i=1

pi (ai � h(g)) =
nX
i=1

piai � h(g)

Intuitively, after event i realizes (which provides a payo¤ ai to this individual), the

�regretful�decision maker compares such monetary payo¤ with respect to the highest

possible payo¤ he could have obtained from playing this lottery, h(g). Utility func-

tions of this type hence re�ect �regret,�as individuals experience a disutility from not

receiving the highest possible monetary payo¤ in the lottery.
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(a) Compute the expected value of the following two gambles:

g1 =

�
0; 1; 2;

1

3
;
1

3
;
1

3

�
and g2 =

�
1; 4; 5;

1

2
;
1

3
;
1

6

�
� First, note that h(g1) = max f0; 1; 2g since all these events can occur with
strictly positive probability in lottery g1. Then, h(g1) = 2, and therefore the

individual�s expected utility from playing the �rst gamble, g1; is

v(g1) =
1

3
(0� 2) + 1

3
(1� 2) + 1

3
(2� 2) = �1

Similarly, we can �nd the expected utility from playing the second gamble,

g2. In particular, in this case the highest payo¤ of the lottery is h(g2) =

max f1; 4; 5g = 5, implying that the expected utility from this gamble is

v(g2) =
1

2
(1� 5) + 1

3
(4� 5) + 1

6
(5� 5) = �7

3

Note that the individual experiences a lower expected utility from playing

the second than the �rst lottery. Intuitively, this happens because: (1) the

distribution of payo¤s in the second lottery is more spread than in the �rst

lottery, and this makes the lower payo¤s on the second gamble to be compared

to a higher possible payo¤ h(g2); and (2) because the lowest payo¤s on the

second gamble are more likely than in the �rst and, as a consequence, the

individual assigns a higher weight in the expected utility calculation to those

monetary payo¤s in which he is experiencing the biggest regret.

(b) Show that all deterministic outcomes (outcomes with probability 100%) yield the

same utility level. That is, v(a1) = v(a2) = ::: = v(an):

� Let us represent by v(ai) the individual�s utility level from a certain determin-
istic outcome ai, i.e., pai = 1. But if outcome ai occurs with certainty, there is

no potential regret. In particular, function h(g) can only �nd the maximum

among all outcomes of the lottery whose probability is strictly greater than

zero. Since pai = 1, then all other outcomes of the lottery receive probability

zero, and hence

h(g) = max fak : k 2 f1; 2; :::; ng and pk > 0g
= max faig = ai
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Therefore, the individual�s expected utility becomes

v(ai) =
nX
i=1

pi (ai � h(g)) = 1 (ai � ai) = 0

Thus, v(a1) = v(a2) = ::: = v(an) = 0, regardless of the monetary payo¤

associated to outcome ai. If there is just one event to be regretful about, my

expected utility is zero!

(c) Show that the preference relation does not satisfy monotonicity if outcomes are

deterministic.

� From the de�nition of monotonicity, we have that

(a1; an;�; 1� �) % (a1; an; �; 1� �)

for all �; � 2 [0; 1] if and only if � > �. So if we make � = 1 and � = 0, then
the above condition on monotonicity becomes

(a1; an; 1; 0) % (a1; an; 0; 1)

Then, clearly a1 % an and a1 � an, which implies that a1 � an strictly.
� However, in part (b) we have shown that the individual�s utility is the same
(and equal to zero) when outcomes are deterministic. In other words, he is

indi¤erent between gambles whose outcomes are deterministic, i.e., a1 � a2 �
::: � an. But this contradicts that a1 � an strictly. Therefore, this �regretful�
preference relation cannot satisfy monotonicity.
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